
Pseudorandom Generators
CS/ECE 407

Today’s objectives

Describe pseudorandomness/pseudorandom
generators

Define negligible functions

Understand security of PRGs

2

3

Alice Bob

m ∈ {0,1}
Evek ←$ {0,1} k ←$ {0,1}

ct ← m ⊕ k

ct

m′ ← ct ⊕ k

4

Alice Bob

m ∈ {0,1}
Evek ←$ {0,1} k ←$ {0,1}

ct ← m ⊕ k

ct

m′ ← ct ⊕ k

Question: what if Alice wants
to send more than one bit?

5

Pr
k←K

[Enc(k, m0) = c] = Pr
k←K

[Enc(k, m1) = c]
For every pair of messages and every cipher text :m0, m1 ∈ M c ∈ C

Perfect Secrecy:

Theorem [Shannon 1949]: Any cipher achieving
perfect secrecy requires that .|K | ≥ |M |

6

Theorem [Shannon 1949]: Any cipher achieving
perfect secrecy requires that .|K | ≥ |M |

“If we want to encrypt more stuff, we need more randomness”

7

011010100

101101111011001

“If we want to encrypt more stuff, we need more randomness”

Q: Can we turn a short random string
into a long random string?

8

011010100

101101111011001

“If we want to encrypt more stuff, we need more randomness”

Q: Can we turn a short random string
into a long random string?

A: No, this is provably impossible

9

01101010

1101101111011001

“If we want to encrypt more stuff, we need more randomness”

Q: Can we turn a short random string
into a long random string?

A: No, this is impossible

Q: Can we turn a short random string
into a long string that looks random?

A: Yes! Use a
pseudorandom generator!

PRG

10

Pseudorandom Generator (PRG)

A PRG is a function G : {0,1}n → {0,1}n+s

11

Pseudorandom Generator (PRG)

A PRG is a function G : {0,1}n → {0,1}n+s

Security?

12

Pseudorandom Generator (PRG)

Security?
Informal: “no program can tell the difference
between the output of and truly random strings”G

A PRG is a function G : {0,1}n → {0,1}n+s

13

Security?
Informal: “no program can tell the difference
between the output of and truly random strings”G

Hardness as a basis for cryptography

State assumptions

Define security

Design system

Prove: if assumption holds, system meets definition

Modern Cryptography

14

State assumptions

Define security

Design system

Prove: if assumption holds, system meets definition

Modern Cryptography

15

PRGs exist

16

01101010

G

My Program

111011000110110101101111011001

17

01101010

G

My Program

111011000110110101101111011001

REAL/FAKE

18

01101010

G

My Program

111011000110110101101111011001

REAL/FAKE

19

01101010

G

My Program

111011000110110101101111011001

REAL/FAKE

G is a PRG if no program can
reliably win this game

20

01101010

G

My Program

111011000110110101101111011001

REAL/FAKE

G is a PRG if no program can
reliably win this game

We believe that PRGs exist

21

01101010

G

My Program

111011000110110101101111011001

REAL/FAKE

G is a PRG if no program can
reliably win this game

We believe that PRGs exist

If they do, P ≠ NP

22

01101010

G

My Program

111011000110110101101111011001

REAL/FAKE

We believe that PRGs exist

If they do, P ≠ NP

23

01101010

G

My Program

111011000110110101101111011001

REAL/FAKE

Goal: Make this more precise

We believe that PRGs exist

If they do, P ≠ NP

Negligible Function

A function is negligible if for any positive polynomial
there exists an such that for all :

μ p
N n > N

μ(n) <
1

p(n)

“ approaches zero really fast”μ

seed <--$
y ::= G(seed)
b ::= A(y)

{0,1}n

y <--$
b ::= A(y)

{0,1}n+s

Game 0 Game 1
PRG security

seed <--$
y ::= G(seed)
b ::= A(y)

{0,1}n

y <--$
b ::= A(y)

{0,1}n+s

Game 0 Game 1

For any PPT algorithm outputting a bit, the following quantity is negligible (in n):A

|Pr[b = 1 | Game 0] − Pr[b = 1 | Game 1] |

PRG security

PRG security

b <--$
if b = 0:
 seed <--$
 y ::= G(seed)
else
 y <--$
b’ ::= A(y)

{0,1}

{0,1}n

{0,1}n+s

For any PPT program outputting a bit, the
following quantity is negligible (in n):

A

Pr [b = b′] −
1
2

PRG security

b <--$
if b = 0:
 seed <--$
 y ::= G(seed)
else
 y <--$
b’ ::= A(y)

{0,1}

{0,1}n

{0,1}n+s

For any PPT program outputting a bit, the
following quantity is negligible (in n):

A

Pr [b = b′] −
1
2

In other words, the best possible strategy is
only negligibly better than simply guessing

Stretching the output of a PRG

01101010

G

1011011 11011001

Stretching the output of a PRG

01101010

G

1011011 11011001

G

00101111 10110101

30

Stretching the output of a PRG

01101010

G

1011011 11011001

G

00101111 10110101

31

This is a
secure PRG

Repeatable any polynomial number of times

01101010

G

1011011 11011001

G

00101111 10110101

32

G

00001011 01110100

33

Alice Bob

m ∈ {0,1}
Evek ←$ {0,1} k ←$ {0,1}

ct ← m ⊕ k

ct

m′ ← ct ⊕ k

Question: what if Alice wants
to send more than one bit?

34

Alice Bob

m ∈ {0,1}
Evek ←$ {0,1} k ←$ {0,1}

ct ← m ⊕ k

ct

m′ ← ct ⊕ k

Question: what if Alice wants
to send more than one bit?

Answer: Alice and Bob can exchange a short PRG
seed, then expand it (effectively) indefinitely

Today’s objectives

Describe pseudorandomness/pseudorandom
generators

Define negligible functions

Understand security of PRGs

35

