Pseudorandom Generators

CS/ECE 407

Today’s objectives

Describe pseudorandomness/pseudorandom
generators

Define negligible functions

Understand security of PRGs

Alice Bob
m e {0,1}
k (—$ {O,l} Eve k (—$ {0,1}

ct —mek m —ct®k

Cl

A —

P
Alice M Bob
m e {0,1}
k <—$ {O,l} ’ Eve ‘ k <—$ {O,l}
ct —mepk m «— ct@Pk

Question: what if Alice wants
to send more than one bit?

Perfect Secrecy:

For every pair of messages my, m; € M and every cipher text ¢ € C:

Pr | Enc(k,my) =c | = Pr | Enc(k,m;) =c]
k<—K k<K

Theorem [Shannon 1949]: Any cipher achieving
perfect secrecy requires that | K| > | M]|.

“If we want to encrypt more stuff, we need more randomness”

Theorem [Shannon 1949]: Any cipher achieving
perfect secrecy requires that | K| > | M]|.

“If we want to encrypt more stuff, we need more randomness”

011010100

Q: Can we turn a short random string
Into a long random string?

101101111011001

“If we want to encrypt more stuff, we need more randomness”

011010100

Q: Can we turn a short random string
Into a long random string?

A: No, this is provably impossible

101101111011001

“If we want to encrypt more stuff, we need more randomness”

01101010 Q: Can we turn a short random string
’ into a long random string?

A: No, this is impossible

PRG
Q Q: Can we turn a short random string
Into a long string that looks random?

’ A: Yes! Use a

1101101111011001 pseudorandom generator!

9

Pseudorandom Generator (PRG)

A PRG is a function G : {0,1}" — {0,1}"*"S

Pseudorandom Generator (PRG)

A PRG is a function G : {0,1}" — {0,1}"*"S

Security?

Pseudorandom Generator (PRG)

A PRG is a function G : {0,1}" — {0,1}"*"S

Security?

Informal: “no program can tell the difference
between the output of G and truly random strings”

Hardness as a basis for cryptography

Security?

Informal: “no program can tell the difference
between the output of G and truly random strings”

Modern Cryptography

State assumptions
Define security
Design system

Prove: If assumption holds, system meets definition

Modern Cryptography

State assumptions PRGs exist
Define security
Design system

Prove: If assumption holds, system meets definition

01101010

v

e

v

101101111011001

My Program

16

o,

111011000110110

01101010

v

e

v

101101111011001 111011000110110

~

My Program

o,

17

01101010

v

e

v

101101111011001

18

111011000110110

My Program /

o,

01101010

’ G is a PRG if no program can
reliably win this game
e,

v

101101111011001 111011000110110

My Program /

o,

19

01101010

’ G is a PRG if no program can
reliably win this game
e,

v

101101111011001 111011000110110

We believe that PRGs exist /
My Program

o,

20

01101010

’ G is a PRG if no program can
reliably win this game
e,

v

101101111011001 111011000110110

We believe that PRGs exist /
My Program

o,

If they do, P # NP

21

01101010

A4 Vi

> <l
5
{@, 1}2/1 {9, 1}2/1
’ pseudorandom distribution uniform distribution
101101111011001 111011000110110

We believe that PRGs exist /
My Program

o,

If they do, P # NP

22

01101010

v

Goal: Make this more precise

e

v

101101111011001 111011000110110

We believe that PRGs exist /
My Program

o,

If they do, P # NP

23

Negligible Function

A function u is negligible if for any positive polynomial p
there exists an N such that for all n > N:

]
p(n)

u(n) <

“U approaches zero really fast”

PRG security

Game 0O Game 1
seed <% {0,1}"
y = G(Seed) V %$ {O,l}n+S

b := A(y) h := A(y)

PRG security

Game 0 Game 1
seed <% {0,1}"
y = G(seed) y <$ {01}
b := A(y) b = A(y)

For any PPT algorithm A outputting a bit, the following quantity is negligible (in n):

Prl]b=1|Game O |—Pr[b=1 | Game 1]|

PRG security

For any PPT program A outputting a bit, the

b e$ {O,l } following quantity is negligible (in n):
1f b = 0: 1
Pr [b=>b] — —
seed «$ {0,1}" p)

v = G(seed)
else

y «<$ {01}
b’ = A(y)

PRG security

For any PPT program A outputting a bit, the

b e$ {O,l} following quantity is negligible (in n):
1f b = 0: 1
Pr [b=>b] — —
seed «$ {0,1}" p)

v = G(seed)

e-l-se In other words, the best possible strategy Is
only negligibly better than simply guessing
y <$ (0,1}

b’ = A(y)

Stretching the output of a PRG

01101010

v

v

1011011 11011001

Stretching the output of a PRG

01101010

1011011 11011001 00101111 10110101

v v v

Stretching the output of a PRG

01101010 o
This Is a

’ secure PRG
v v

1011011 11011001 00101111 10110101 J

v v v

Repeatable any polynomial number of times

01101010

1011011 11011001 00101111 10110101 00001011 01110100

v v v v

Cl

A —

P
Alice M Bob
m e {0,1}
k <—$ {O,l} ’ Eve ‘ k <—$ {O,l}
ct —mepk m «— ct@Pk

Question: what if Alice wants
to send more than one bit?

Cl

I | | y
\ v'
\ y
V'\. ,
N y
< y
A y
4

Alice M Bob
m e {0,1}
ks 10,15 9. k < (0,1}

ct —mepk m — ct®k
Question: what if Alice wants

to send more than one bit?

Answer: Alice and Bob can exchange a short PRG
seed, then expand it (effegtively) Indefinitely

Today’s objectives

Describe pseudorandomness/pseudorandom
generators

Define negligible functions

Understand security of PRGs

