Pseudorandom Generators CS/ECE 407

Today's objectives

generators

Define negligible functions

Understand security of PRGs

Describe pseudorandomness/pseudorandom

Alice $m \in \{0,1\}$ $k \leftarrow_{\$} \{0,1\}$ $ct \leftarrow m \bigoplus k$

 $k \leftarrow_{\$} \{0,1\}$ $m' \leftarrow ct \oplus k$

Alice $m \in \{0,1\}$ $k \leftarrow_{\$} \{0,1\}$ $ct \leftarrow m \bigoplus k$

Question: what if Alice wants to send more than one bit?

$k \leftarrow_{\$} \{0,1\}$ $m' \leftarrow ct \bigoplus k$

Perfect Secrecy:

For every pair of messages $m_0, m_1 \in M$ and every cipher text $c \in C$: $\Pr_{k \leftarrow K} [Enc(k, m_0) = c] = \Pr_{k \leftarrow K} [Enc(k, m_1) = c]$

Theorem [Shannon 1949]: Any cipher achieving perfect secrecy requires that $|K| \ge |M|$.

"If we want to encrypt more stuff, we need more randomness"

Theorem [Shannon 1949]: Any cipher achieving perfect secrecy requires that $|K| \ge |M|$.

"If we want to encrypt more stuff, we need more randomness"

011010100

101101111011001

Q: Can we turn a short random string into a long random string?

101101111011001

"If we want to encrypt more stuff, we need more randomness"

Q: Can we turn a short random string into a long random string?

A: No, this is provably impossible

Q: Can we turn a short random string into a long string that looks random?

"If we want to encrypt more stuff, we need more randomness"

Q: Can we turn a short random string into a long random string?

A: No, this is impossible

A: Yes! Use a pseudorandom generator!

Pseudorandom Generator (PRG)

A PRG is a function $G: \{0,1\}^n \rightarrow \{0,1\}^{n+s}$

Pseudorandom Generator (PRG)

A PRG is a function $G: \{0,1\}^n \rightarrow \{0,1\}^{n+s}$

Security?

Pseudorandom Generator (PRG)

A PRG is a function $G: \{0,1\}^n \rightarrow \{0,1\}^{n+s}$

Security?

Informal: "no program can tell the difference

between the output of G and truly random strings"

Hardness as a basis for cryptography

Security?

Informal: "no program can tell the difference

between the output of G and truly random strings"

Modern Cryptography

State assumptions

Define security

Design system

Prove: if assumption holds, system meets definition

Modern Cryptography

State assumptions

Define security

Design system

PRGs exist

Prove: if assumption holds, system meets definition

G is a PRG if no program can reliably win this game

We believe that PRGs exist

G is a PRG if no program can reliably win this game

We believe that PRGs exist

If they do, $P \neq NP$

G is a PRG if no program can reliably win this game

We believe that PRGs exist

If they do, $P \neq NP$

pseudorandom distribution

uniform distribution

 $\{0, 1\}^{2\lambda}$

We believe that PRGs exist

If they do, $P \neq NP$

Goal: Make this more precise

Negligible Function

"µ approaches zero really fast"

A function μ is **negligible** if for any positive polynomial p there exists an N such that for all n > N:

Game 0 seed \leftarrow \$ {0,1}ⁿ y := G(seed)b := A(y)

PRG security

Game 1

$y \leftarrow \$ \{0,1\}^{n+s}$ b := A(y)

Game 0 seed \leftarrow \$ {0,1}ⁿ y := G(seed)b := A(y)

For any PPT algorithm A outputting a bit, the following quantity is **negligible** (in n):

PRG security

Game 1

$V \leftarrow \$ \{0,1\}^{n+s}$ b := A(y)

$|\Pr[b = 1 | Game 0] - \Pr[b = 1 | Game 1]|$

$b \leftarrow \$ \{0,1\}$ **if** b = 0: seed \leftarrow \$ {0,1}ⁿ y := G(seed)else $y \leftarrow \$ \{0,1\}^{n+s}$ b' := A(y)

PRG security

For any PPT program A outputting a bit, the following quantity is **negligible** (in n):

$$\Pr\left[b=b'\right] - \frac{1}{2}$$

$b \leftarrow \$ \{0,1\}$ **if** b = 0: seed \leftarrow \$ {0,1}ⁿ y := G(seed)else $y \leftarrow \$ \{0,1\}^{n+s}$ b' := A(y)

PRG security

For any PPT program A outputting a bit, the following quantity is **negligible** (in n):

$$\Pr\left[b=b'\right] - \frac{1}{2}$$

In other words, the best possible strategy is only negligibly better than simply guessing

Stretching the output of a PRG

Stretching the output of a PRG 01101010 G G 00101111 10110101 1011011 11011001 30

Stretching the output of a PRG 01101010 This is a secure PRG G G 00101111 10110101 1011011 11011001 31

Repeatable any polynomial number of times

Alice $m \in \{0,1\}$ $k \leftarrow_{\$} \{0,1\}$ $ct \leftarrow m \oplus k$

to send more than one bit?

Question: what if Alice wants

Alice $m \in \{0,1\}$ $k \leftarrow_{\$} \{0,1\}$ $ct \leftarrow m \oplus k$

Question: what if Alice wants to send more than one bit? **Answer:** Alice and Bob can exchange a short PRG seed, then expand it (effectively) indefinitely

Today's objectives

generators

Define negligible functions

Understand security of PRGs

Describe pseudorandomness/pseudorandom